Nolan, D. S., S. *Nebylitsa, B. D. McNoldy, and S. J. Majumdar, 2024: Modulation of tropical cyclone radid intensification by mesoscale asymmetries. Q. J. Roy. Meteorol. Soc., 150, 28 pp, https://doi.org/10.1002/qj.4602.
*Takahashi T., D. S. Nolan, and B. D. McNoldy, 2024: The vortex structure and near-surface winds of Typhoon Faxai (2019) during landfall. Part II: Evaluation of WRF simulations. Q. J. Roy. Meteorol. Soc., 150, 25 pp, https://doi.org/10.1002/qj.4663.
*Takahashi T., and D. S. Nolan, 2024: The vortex structure and near-surface winds of Typhoon Faxai (2019) during landfall. Part I: Observational analysis. Q. J. Roy. Meteorol. Soc., 150, 1172-1193, https://doi.org/10.1002/qj.4641.
Rozoff, C. M., D. S. Nolan, G. H. Bryan, E. A. Hendricks, and J. C. Knievel, 2023: Large eddy simulations of tropical cyclone boundary layers at landfall in an idealized urban environment. J. Appl. Meteorol. and Climatol., 62, 1457-1478, https://doi.org/10.1175/JAMC-D-23-0024.1.
*Nebylitsa, S., S. J. Majumdar, and D. S. Nolan, 2023: Revisiting environmental wind and moisture calculations in the context of tropical cyclone intensification. Weather and Forecasting, 38, 2077-2094. https://doi.org/10.1175/WAF-D-23-0045.1.
Wadler, J. B., D. S. Nolan, J. A. Zhang, L. K. Shay, J. B. Olson, and J. J. Cione, 2023: The effect of advection on the three-dimensional distribution of turbulent kinetic energy and its generation in idealized tropical cyclone simulations. Journal of Advances in Modeling Earth Systems, 15, https://doi.org/10.1029/2022MS003230.
*Hlywiak, J., and D. S. Nolan, 2022: Targeted artificial ocean cooling to weaken tropical cyclones would be futile. Communications Earth & Environment, 3, Art. 195, https://doi.org/10.1038/s43247-022-00519-1.
Nolan, D. S., and M. J. Onderlinde, 2022: The representation of spiral gravity waves in a mesoscale model with increasing horizontal and vertical resolution. Journal of Advances in Modeling Earth Systems, 14, e2022MS002989. https://doi.org/10.1029/2022MS002989.
*Evans, R. C., and D. S. Nolan, 2022: The spatiotemporal evolution of the diurnal cycle in two WRF simulations of tropical cyclones. J. Atmos. Sci., 79, 1021-1043. https://doi.org/10.1175/JAS-D-21-0100.1.
*Hlywiak, J., and D. S. Nolan, 2022: The evolution of asymmetries in the tropical cyclone boundary layer wind field during landfall. Mon. Wea. Rev., 150, 529-549. https://doi.org/10.1175/MWR-D-21-0191.1.
Wadler, J. B., D. S. Nolan, J. A. Zhang, and L. K. Shay, 2021: Thermodynamic characteristics of downdrafts as seen in idealized simulations of different intensities. J. Atmos. Sci., 78, 3503-3524. https://doi.org/10.1175/JAS-D-21-0006.1.
Wu, S.-N., B. J. Soden, and D. S. Nolan, 2021: Examining the role of cloud radiative interactions in tropical cyclone development using satellite measurements and WRF simulations. Geophys. Res. Lett., 48, e2021GL093259.
Hendricks. E. A., J. C. Knievel, and D. S. Nolan, 2021: Evaluation of boundary layer and urban-canopy parameterizations for simulating wind in Miami during Hurricane Irma (2017). Mon. Wea. Rev., 149, 2321-2329.
*Hlywiak, J., and D. S. Nolan, 2021: The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Sci., 78, 983-1000.
Dai, Y., S. J. Majumdar, and D. S. Nolan, 2021: Tropical cyclone resistance to strong environmental shear. J. Atmos. Sci., 78, 1275-1293.
Hiron, L., D. S. Nolan, and L. K. Shay, 2021: A study of ageostrophy during strong, nonlinear eddy-front interaction in the Gulf of Mexico. J. Phys. Ocean., 51, 745-755.
Nolan, D. S., B. D. McNoldy, and J. Yunge*, F. J. Masters, and I. M. Giammanco, 2021: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part II: Surface winds, inflow angles, and boundary layer profiles. Mon. Wea. Rev., 149, 697-713.
Nolan, D. S., B. D. McNoldy, and J. Yunge*, 2021: Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part I: Model initialization and simulation validation. Mon. Wea. Rev., 149, 679-695.
Wu, S.-N., B. J. Soden, Y. Miyamoto, D. S. Nolan, and S. A. Buehler, 2021: Using satellite observations to evaluate the relationships between ice condensate, latent heat release, and tropical cyclone intensification in a mesoscale model. Mon. Wea. Rev., 149, 113-129.
Nolan, D. S., 2020: An investigation of spiral gravity waves radiating from tropical cyclones using a linear, nonhydrostatic model. J. Atmos. Sci., 77, 1733-1759.
Zhang, J. A., J. P. Dunion, and D. S. Nolan, 2020: In situ observations of the diurnal variation in the boundary layer of mature hurricanes. Geophys. Res. Lett., 47, 2019GL086206.
Shi, L., M. Olabarrieta, D. S. Nolan, and J. C. Warner, 2020: Tropical cyclones rainbands can trigger meteotsunamis. Nature Comm., 11, 678.
Nolan, D. S., Y. Miyamoto, S.-N. Wu, and B. J. Soden, 2019: On the correlation between total condensate and moist heating in tropical cyclones and applications for diagnosing intensity. Mon. Wea. Rev., 147, 3759-3784.
*Blanco. J. E., D. S. Nolan, and B. E. Mapes, 2019: Nonlinear zonal propagation of organized convection in the tropics. J. Atmos. Sci., 76, 2837-2867.
*Evans, R. C., and D. S. Nolan, 2019: Balanced and radiating wave responses to diurnal heating in tropical cyclone-like vortices using a linear nonhydrostatic model. J. Atmos. Sci., 76, 2575-2597.
*Hlywiak, J., and D. S. Nolan, 2019: The influence of oceanic barrier layers on tropical cyclone intensity as determined through idealized, coupled numerical simulations. J. Phys. Ocean., 49, 1723-1745.
Dai, Y., S. J. Majumdar, and D. S. Nolan, 2019: The outflow-rainband relationship induced by environmental flow around tropical cyclones. J. Atmos. Sci., 76, 1845-1863.
Dunion, J. P., C. D. Thorncroft, and D. S. Nolan, 2019: Tropical cyclone diurnal signals in a hurricane nature run. Mon. Wea. Rev., 147, 363-388.
Klotz, B. W., and D. S. Nolan, 2019: SFMR surface wind undersampling over the tropical cyclone lifecycle. Mon. Wea. Rev., 147, 247-268.
Miyamoto, Y., D. S. Nolan, and N. Sugimoto, 2018: A dynamical mechanism for secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 75, 3965-3986.
#Dahl, N. A., and D. S. Nolan, 2018: Using high-resolution simulations to quantify errors in radar estimates of tornado intensity. Mon. Wea. Rev., 146, 2271-2295.
Cohen, Y., N. Harnik, E. Heifetz, D. S. Nolan, D.-D. Tao, and F. Zhang, 2018: On the violation of gradient wind balance at the top of tropical cyclones. Geophys. Res. Lett., 44, 8017-8026.
Miyamoto, Y., D. S. Nolan, and N. Sugimoto, 2018: A dynamical mechanism for secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 75, 3965-3986.
Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2017: Reply to “Comments on ‘Revisiting the relationship between eyewall contraction and intensification.’” J. Atmos. Sci., 74, 4275-4286.
Nolan, D. S., and J. A. Zhang, 2017: Spiral gravity waves radiating from tropical cyclones. Geophys. Res. Lett., 44, 3924-3931, doi:10.1002/2017/GL073572.
*Bhatia, K. T., D. S. Nolan, A. B. Schumacher, and M. DeMaria, 2017: Improving tropical cyclone intensity forecasts with PRIME. Wea. Forecasting, 32, 1353-1377.
*Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, doi:10.1002/2016MS000796.
Dai, Y., S. J. Majumdar, and D. S. Nolan, 2017: Secondary eyewall formation in tropical cyclones by outflow-jet interaction. J. Atmos. Sci., 74, 1941-1958.
#Dahl, N. A., D. S. Nolan, G. H. Bryan, and R. Rotunno, 2017: Using high-resolution simulations to quantify underestimates of tornado intensity from in situ observations. Mon. Wea. Rev., 145, 1963-1982.
Nolan, D. S., N. A. Dahl, G. H. Bryan, and R. Rotunno, 2017: Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence. J. Atmos. Sci., 74, 1573-1597.
Bryan, G. H., N. A. Dahl, D. S. Nolan, and R. Rotunno, 2017: An eddy-injection method for large-eddy simulations of tornado-like vortices. Mon. Wea. Rev., 145, 1937-1961. Rudko, M. V., I. V. Kamenkovich, and D. S. Nolan, 2016: Stability of baroclinic vortices on the β-plane and implications for transport. J. Phys. Oceanography, 46, 3245-3262.
Rudko, M. V., I. V. Kamenkovich, and D. S. Nolan, 2016: Stability of baroclinic vortices on the -plane and implications for transport. J. Phys. Oceanography, 46, 3245-3262.
Rotunno, R., G. H. Bryan, D. S. Nolan, and N. A. Dahl, 2016: Axisymmetric tornado simulations at high Reynolds number. J. Atmos. Sci., 73, 3843-3854.
Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016: On the upstream track deflection of tropical cyclones past a mountain ridge: Idealized experiments. J. Atmos. Sci., 73, 3157-3180.
*Blanco, J. E., D. S. Nolan, and B. E. Mapes, 2016: Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-convective coupling, J. Geophys. Res. Atmos., 121, 11,319–11,347.
*Blanco, J. E., D. S. Nolan, and S. N. Tulich, 2016: Convectively coupled Kelvin waves in aquachannel simulations: 1. Propagation speeds, composite structures, and comparison with aquaplanets, J. Geophys. Res. Atmos., 121, 11,287–11,318.
Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to height and depth of environmental wind shear. Mon. Wea. Rev., 144, 2155-2175.
Nolan, D. S., S. N. Tulich, and J. E. Blanco, 2016: ITCZ structure as determined by parameterized versus explicit convection in aquachannel and aquapatch simulations. J. Adv. Model. Earth. Syst., 8, doi: 10.1002/2015MS000560.
*Onderlinde, M. J., and D. S. Nolan, 2016: Tropical cyclone-relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869-890.
*Bhatia, K. T., and D. S. Nolan, 2015: Prediction of intensity model error (PRIME) for Atlantic basin tropical cyclones. Wea. Forecasting, 30, 1845-1865.
Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136-3155.
Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 1283-1306.
*Moon, Y., and D. S. Nolan, 2015: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part II: Propagation of inner rainbands. J. Atmos. Sci., 72, 191-215.
*Moon, Y., and D. S. Nolan, 2015: Spiral rainbands in a numerical simulation of Hurricane Bill (2009). Part I: Structures and comparisons to observations. J. Atmos. Sci., 72, 164- 190.
Kepert, J. D., and D. S. Nolan, 2014: Reply. J. Atmos. Sci., 71, 4692-4704.
*Onderlinde, M. J., and D. S. Nolan, 2014: Environmental helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci., 71, 4308-4320.
Nolan, D. S., J. A. Zhang, and E. W. Uhlhorn, 2014: On the limits of estimating the maximum wind speeds in hurricanes. Mon. Wea. Rev., 142, 2814-2837.
Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded data set of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 2747-2762.
Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the Joint OSSE Nature Run and the WRF model. J. Adv. Model. Earth Syst., 5, 1-24.
*Bhatia, K. T., D. S. Nolan, 2013: Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961–980.
Rappin, E. D., D. S. Nolan, S. J. Majumdar, 2013: A highly configurable vortex initialization method for tropical cyclones. Mon. Wea. Rev., 141, 3556–3575.
Nolan, D. S., 2013: On the use of Doppler-radar derived winds to estimate the secondary circulations of tornados. J. Atmos. Sci., 70, 1160-1171.
Nolan, D. S., 2012: Three-dimensional instabilities in tornado-like vortices with secondary circulations. J. Fluid Mech., 711, 61-100.
Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers, and Control. Kazuyoshi Oouchi and Hironori Fudeyasu, eds., Nova Science Publishers, Happauge, New York, pp. 1-36.
Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 2621-2643.
#Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Q. J. R. Meteorol. Soc., 138, 1035-1054.
Uhlhorn, E. W., and D. S. Nolan, 2012: Observational undersampling in tropical cyclones and its impact on estimated intensity. Mon. Wea. Rev., 140, 825-840.
*Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657-1680.
Kelly, D. L., D. Letson, F. Nelson, D. S. Nolan, and D. Solis, 2012: Evolution of subjective hurricane risk perceptions: A Bayesian approach. Journal of Economic Behavior and Organization, 81, 644-663.
Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry mid-level air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236-257.
*McGauley, M. G., and D. S. Nolan, 2011: Measuring environmental favorableness for tropical cyclogenesis by statistical analysis of threshold parameters. J. Climate., 24, 5968- 5997.
Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523-2535.
*Stern, D. P., and D. S. Nolan, 2011: On the vertical decay rate of the maximum tangential winds in tropical cyclones. J. Atmos. Sci., 68, 2073-2094.
Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst., 3, Art. M08001, 28 pp.
Yamaguchi, M., D. S. Nolan, M. Iskandarani, S. J. Majumdar, M. S. Peng, and C. A. Reynolds, 2010: Singular vectors for tropical cyclone-like vortices in a nondivergent barotropic framework. J. Atmos. Sci., 68, 2273-2291.
Nolan, D. S., S. W. Powell, C. Zhang, and B. E. Mapes, 2010: Idealized simulations of the ITCZ and its multi-level flows. J. Atmos. Sci., 67, 4028-4053.
#Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteorol. Soc., 136, 1954-1971.
*Moon, Y., D. S. Nolan, and M. Iskandarani, 2010: On the use of two-dimensional flow to study secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 67, 3765-3773.
*Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 1779-1805.
Colette, A., N. Leith, V. Daniel, E. Bellone, and D. S. Nolan, 2010: Using mesoscale simulations to train statistical models of tropical cyclone intensity over land. Mon. Wea. Rev., 138, 2058-2073.
*Moon, Y., and D. S. Nolan, 2010: Do gravity waves transport angular momentum away from hurricanes? J. Atmos. Sci., 67, 117-135.
Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer core boundary layer. Mon. Wea. Rev., 137, 3651-3674.
Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 3675-3698.
*Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations vs. theory. J. Atmos. Sci., 66, 3579-3600.
Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 3717-3743.
#Hodyss, D., and D. S. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids., 20, 096602.
Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, doi:10.1029/ 2008GL034147.
Zhang, C., D. S. Nolan, C. D. Thorncroft, and H. Nguyen, 2008: Shallow meridional circulations in the tropical atmosphere. J. Climate, 21, 3453-3470.
Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteorol. Mag., 56, 241-266.
Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Q. J. Roy. Meteorol. Soc., 133, 2085-2107.
Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377-3405.
Nolan, D. S., 2005: A new scaling for tornado-like vortices. J. Atmos. Sci., 62, 2639-2645.
Nolan, D. S., 2005: Instabilities in hurricane-like boundary layers. Dyn. Atmos. Oceans, 40, 209-236.
Knievel, J. C., D. S. Nolan, and J. P. Kossin, 2004: An assessment of the balance in a mesoscale vortex within a midlatitude, continental mesoscale convective system. J. Atmos. Sci., 61, 1827-1832.
Baidya Roy, S., C. P. Weaver, D. S. Nolan, and R. Avissar, 2003: A preferred scale for landscape forced mesoscale circulations? J. Geophys. Res., 108(D22), 8854, doi:10.1029/ 2002JD003097.
Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 2717-2745.
Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Formulation, linearized evolution, and stability. J. Atmos. Sci., 59, 2989-3020.
Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58, 3243-3270.
Nolan, D. S., 2001: The stabilizing effects of axial stretching on turbulent vortex dynamics. Phys. Fluids., 13, 1724-1738.
Nolan, D. S., and M. T. Montgomery, 2000: The algebraic growth of wavenumber one disturbances in hurricane-like vortices. J. Atmos. Sci., 57, 3514-3538.
Nolan, D. S., and B. F. Farrell, 1999: The intensification of two-dimensional swirling flows by stochastic asymmetric forcing. J. Atmos. Sci., 56, 3937-3962.
Nolan, D. S., and B. F. Farrell, 1999: The structure and dynamics of tornado-like vortices. J. Atmos. Sci., 56, 2908-2936.
Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 1282-1307.
Nolan, D. S., M. Yamaguchi, C. Sampson, D. P. Stern, R. McTaggart-Cowan, and C. Evans, 2019: Tropical Cyclone Structure Analysis and Change. Topic Report 4, 8th International Workshop on Tropical Cyclones, World Meteorological Organization.
Nolan, D. S., and B. W. Klotz, 2017: Guidance for adjustments to in-situ observations of wind and pressure over the tropical cyclone life cycle. Delivered to the National Hurricane Center.
Kepert, J. D., M. Foley, J. Hawkins, D. S. Nolan, M. Peng, R. Smith, Y. Wang, and S. Westrelin, 2006: Tropical cyclone inner core dynamics. Topic reports, Sixth International Workshop on Tropical Cyclones, World Meteorological Organization, pp. 79-119.
Knutson, T. R., K. Emanuel, S. Emori, J. Evans, G. Holland, C. Landsea, K.-B. Liu, R. E. MacDonald, D. S. Nolan, M. Sugi, and Y. Wang, 2006: Possible relationships between climate change and tropical cyclone activity. Topic reports, Sixth International Workshop on Tropical Cyclones, World Meteorological Organization, pp. 464-492.
Nolan, D. S., A. S. Almgren, J. B. Bell, 2000: Studies of the relationship between environmental forcing and the structure and dynamics of tornado-like vortices. Lawrence Berkeley National Laboratory Report no. LBNL-47554.
Nolan, D. S., 1996: Axisymmetric and Asymmetric Vortex Dynamics in Convergent Flows. Ph.D. Thesis, Department of Earth and Planetary Sciences, Harvard University.